
Announcements Recap Monadic IO A handful monads more FIN

Software System Design and Implementation

Lecture 7: Monads, IO

Johannes Åman Pohjola
University of New South Wales

Term 2 2023

1



Announcements Recap Monadic IO A handful monads more FIN

Announcements

As of Monday, Assignment 2 is out!
Due 04 Aug 2023

2



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to abstract away repetitive code:

Maybe: constantly case-checking for Nothing
State: manually threading through state

They allowed us to more easily write common code:

List: Exploring all possible choices
List: Building solutions by backtracking
List: List comprehensions

3



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to abstract away repetitive code:

Maybe: constantly case-checking for Nothing
State: manually threading through state

They allowed us to more easily write common code:

List: Exploring all possible choices
List: Building solutions by backtracking
List: List comprehensions

4



Announcements Recap Monadic IO A handful monads more FIN

Two Weeks of Monads

So far we’ve met Maybe, State, and List.

They allowed us to abstract away repetitive code:

Maybe: constantly case-checking for Nothing
State: manually threading through state

They allowed us to more easily write common code:

List: Exploring all possible choices
List: Building solutions by backtracking
List: List comprehensions

5



Announcements Recap Monadic IO A handful monads more FIN

The Monad Type Class

All of these (seemingly different) things are instances of the same
abstract concept: a monad.

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

The Haskell community uses monads to solve many system design
problems, including but not limited to the ones we’ve seen.

6



Announcements Recap Monadic IO A handful monads more FIN

The original purpose

Monadic I/O

In Oct 1992, Simon Peyton Jones and Philip Wadler presented a
new model, based on monads, for performing input and output
in pure functional languages such as Haskell.

We still haven’t done any I/O!
Now that we know a few examples of monads, we’ll be able to
understand how to use monads to do input/output, and what
problems this solves.

7



Announcements Recap Monadic IO A handful monads more FIN

The original purpose

Monadic I/O

In Oct 1992, Simon Peyton Jones and Philip Wadler presented a
new model, based on monads, for performing input and output
in pure functional languages such as Haskell.

We still haven’t done any I/O!
Now that we know a few examples of monads, we’ll be able to
understand how to use monads to do input/output, and what
problems this solves.

8



Announcements Recap Monadic IO A handful monads more FIN

Monads

Recall how two weeks ago we defined our own State type and
monad using

type State s a = s -> (s,a)

State Operations

get :: State s s

put :: s -> State s ()

return :: a -> State s a

(>>=) :: State s a -> (a -> State s b) -> State s b

evalState :: State s a -> s -> a

We need to perform I/O, to communicate with the user and with
the hardware. A State-like monad will allow us to do this.

9



Announcements Recap Monadic IO A handful monads more FIN

Monads

Recall how two weeks ago we defined our own State type and
monad using

type State s a = s -> (s,a)

State Operations

get :: State s s

put :: s -> State s ()

return :: a -> State s a

(>>=) :: State s a -> (a -> State s b) -> State s b

evalState :: State s a -> s -> a

We need to perform I/O, to communicate with the user and with
the hardware. A State-like monad will allow us to do this.

10



Announcements Recap Monadic IO A handful monads more FIN

The IO Type
IO a is a procedure that may perform side effects, and returns a
result of type a.

World interpretation

IO a will be an abstract type. But what if we thought of it as a
function:

RealWorld -> (RealWorld, a)

We can! This was Jones’ and Wadler’s original idea. And if we do,
we get a monad. (that’s close to how it’s implemented in GHC)

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

getChar :: IO Char

getLine :: IO String

putStrLn :: String -> IO ()

11



Announcements Recap Monadic IO A handful monads more FIN

The IO Type
IO a is a procedure that may perform side effects, and returns a
result of type a.

World interpretation

IO a will be an abstract type. But what if we thought of it as a
function:

RealWorld -> (RealWorld, a)

We can! This was Jones’ and Wadler’s original idea. And if we do,
we get a monad. (that’s close to how it’s implemented in GHC)

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

getChar :: IO Char

getLine :: IO String

putStrLn :: String -> IO ()

12



Announcements Recap Monadic IO A handful monads more FIN

The IO Type
IO a is a procedure that may perform side effects, and returns a
result of type a.

World interpretation

IO a will be an abstract type. But what if we thought of it as a
function:

RealWorld -> (RealWorld, a)

We can! This was Jones’ and Wadler’s original idea. And if we do,
we get a monad. (that’s close to how it’s implemented in GHC)

(>>=) :: IO a -> (a -> IO b) -> IO b

return :: a -> IO a

getChar :: IO Char

getLine :: IO String

putStrLn :: String -> IO ()

13



Announcements Recap Monadic IO A handful monads more FIN

Infectious IO
The RealWorld type is purely abstract. You can’t get or put it.
We can convert values to procedures with return:

return :: a -> IO a

This is a procedure that returns the given value, and does nothing
else.

But we can’t convert procedures to pure values:

???? :: IO a -> a

The only function that gets an a from an IO a is >>=:

(>>=) :: IO a -> (a -> IO b) -> IO b

But it returns an IO procedure as well.

Conclusion

The moment you use an IO procedure in a function, IO shows up
in the types, and you can’t get rid of it!

If a function makes use of IO effects directly or indirectly, it will
have IO in its type!

14



Announcements Recap Monadic IO A handful monads more FIN

Infectious IO
The RealWorld type is purely abstract. You can’t get or put it.
We can convert values to procedures with return:

return :: a -> IO a

This is a procedure that returns the given value, and does nothing
else. But we can’t convert procedures to pure values:

???? :: IO a -> a

The only function that gets an a from an IO a is >>=:

(>>=) :: IO a -> (a -> IO b) -> IO b

But it returns an IO procedure as well.

Conclusion

The moment you use an IO procedure in a function, IO shows up
in the types, and you can’t get rid of it!

If a function makes use of IO effects directly or indirectly, it will
have IO in its type!

15



Announcements Recap Monadic IO A handful monads more FIN

Infectious IO
The RealWorld type is purely abstract. You can’t get or put it.
We can convert values to procedures with return:

return :: a -> IO a

This is a procedure that returns the given value, and does nothing
else. But we can’t convert procedures to pure values:

???? :: IO a -> a

The only function that gets an a from an IO a is >>=:

(>>=) :: IO a -> (a -> IO b) -> IO b

But it returns an IO procedure as well.

Conclusion

The moment you use an IO procedure in a function, IO shows up
in the types, and you can’t get rid of it!

If a function makes use of IO effects directly or indirectly, it will
have IO in its type!

16



Announcements Recap Monadic IO A handful monads more FIN

Infectious IO
The RealWorld type is purely abstract. You can’t get or put it.
We can convert values to procedures with return:

return :: a -> IO a

This is a procedure that returns the given value, and does nothing
else. But we can’t convert procedures to pure values:

???? :: IO a -> a

The only function that gets an a from an IO a is >>=:

(>>=) :: IO a -> (a -> IO b) -> IO b

But it returns an IO procedure as well.

Conclusion

The moment you use an IO procedure in a function, IO shows up
in the types, and you can’t get rid of it!

If a function makes use of IO effects directly or indirectly, it will
have IO in its type!

17



Announcements Recap Monadic IO A handful monads more FIN

Equational Reasoning

Demos: Hello World, Referential Transparency, Equational
Reasoning

18



Announcements Recap Monadic IO A handful monads more FIN

Haskell Design Strategy

We ultimately “run” IO procedures by calling them from main:

main :: IO ()

Pure Logic

IO Shell

Encapsulated
Internal State

19



Announcements Recap Monadic IO A handful monads more FIN

Haskell Design Strategy

We ultimately “run” IO procedures by calling them from main:

main :: IO ()

Pure Logic

IO Shell

Encapsulated
Internal State

20



Announcements Recap Monadic IO A handful monads more FIN

Examples

Example (Triangles)

Given an input number n, print a triangle of * characters of base
width n.

Example (Maze Game)

Design a game that reads in a n × n maze from a file. The player
starts at position (0, 0) and must reach position (n − 1, n − 1) to
win. The game accepts keyboard input to move the player around
the maze.

21



Announcements Recap Monadic IO A handful monads more FIN

Examples

Example (Triangles)

Given an input number n, print a triangle of * characters of base
width n.

Example (Maze Game)

Design a game that reads in a n × n maze from a file. The player
starts at position (0, 0) and must reach position (n − 1, n − 1) to
win. The game accepts keyboard input to move the player around
the maze.

22



Announcements Recap Monadic IO A handful monads more FIN

Benefits of an IO Type

Absence of undeclared effects (i.e. side effects) makes the
type system more informative:

Type signatures capture the entire interface of a function.
All dependencies are explicit in the form of data dependencies.
All dependencies are typed.

Equational reasoning works, and code is easier to test:

Testing is local, doesn’t require complex set-up and tear-down.
Reasoning is local, doesn’t require state invariants.
Type checking leads to strong guarantees.

23



Announcements Recap Monadic IO A handful monads more FIN

Benefits of an IO Type

Absence of undeclared effects (i.e. side effects) makes the
type system more informative:

Type signatures capture the entire interface of a function.
All dependencies are explicit in the form of data dependencies.
All dependencies are typed.

Equational reasoning works, and code is easier to test:

Testing is local, doesn’t require complex set-up and tear-down.
Reasoning is local, doesn’t require state invariants.
Type checking leads to strong guarantees.

24



Announcements Recap Monadic IO A handful monads more FIN

The Either Monad

data Either a b = Left a | Right b

The Either type represents values with two possibilities: a value
of type Either a b is either Left a or Right b.

This type is sometimes used to represent a value which is either
correct or an error; by convention, the Left constructor is used to
hold an error value and the Right constructor is used to hold a
correct value (mnemonic: ”right” also means ”correct”). Demo

25



Announcements Recap Monadic IO A handful monads more FIN

FIN

1 Thanks!

26


	Announcements
	

	Recap
	

	Monadic IO
	

	A handful monads more
	

	FIN
	


